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'e prognosis of breast cancer has radically changed in recent years and continues to improve due to the broad application of
effective therapies. New targeting strategies including targeted delivery of cytotoxic drugs via receptor-targeting agents have been
developed. We summarize recent publications and developments of novel antibody-drug conjugates (ADCs) used to control
breast cancer.

1. Introduction

Cancer is the second main cause of mortality worldwide [1].
Breast cancer is the most common cancer in women, and the
most common cancer overall [2]. A subtype of breast cancer
overexpresses HER2 receptors and is called HER2-positive
(HER2+); HER2+ breast cancer accounts for 15–20% of all
breast cancers and is associated with poor patient outcome
and aggressive phenotype [3]. For many years, the therapies
of the breast cancer were based on known biomarkers such
as estrogen receptor (ER), progesterone receptor (PR), and
human epidermal growth factor receptor 2 (HER2) [4–6].
One of these treatments is trastuzumab; a humanized
monoclonal antibody that targets HER2 receptor, leading to
angiogenesis inhibition, diminished microvessel density,
and better overall survival rates in patients with HER2-
positive breast cancer [7]. However, resistance to trastu-
zumab has been reported [8, 9], in addition to several severe
adverse effects such as cardiac toxicity [10]. In general, naked
monoclonal antibodies, despite their importance in cancer
research, have not offered the expected curative results, so
the need for more potent agents was clear in order to
completely treat cancer. Further studies using monoclonal
antibodies as a treatment were made [11] introducing us to
the amazing therapeutic properties of them, especially the
selective delivery of cytotoxic agents to tumor cells, creating

what is called antibody-drug conjugates (ADCs) as a solu-
tion to increase the therapeutic index of a cytotoxic chemical
agent [11, 12]. Although these HER2-targeting therapies
have improved the overall survival rate, many more cases are
still not affected by these treatments. A large population of
them have breast cancer which does not overexpress HER2
receptors, those are clinically categorized as “HER2-nega-
tive.” 'e word “negative” does not mean that the tumor
does not express any HER2 receptors; it actually means that
the amount of the receptors is not enough for the anti-HER2
antibodies to be used as a treatment [13]. If the tumor also
does not express hormone receptors (HR), then it is called
triple negative breast cancer (TNBC). In this review, we are
going to describe ADCs generally and ADCs used in
managing breast cancers specifically.

2. Antibody-Drug Conjugates (ADCs)

ADCs are a new class of protein-based therapeutic agents
which bring together the targeting capabilities, high selectivity,
and stability of mAbs with the cancer-killing potential of highly
potent payloads to increase precise drug delivery in cancer cells,
while sparing healthy tissues and/or cells from chemothera-
peutic damage. 'is ability of discrimination between normal
and cancerous cells would not have been achieved without
decades of development of mAbs [9, 14–18].
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3. Antibody-Drug Conjugates (ADCs) Structure

In order to achieve the desired results, each ADC must
contain three parts (Figure 1) [19]:

Monoclonal antibody: it binds the ADC to a specific
tumor cell surface protein [19]. 'e antibody should bind
tumor cells with high avidity and have little crossreactivity
with healthy cells so that it does not affect them. All the
antibodies developed or currently in clinical trials are im-
munoglobulin G (IgG); taking advantage of that, they
contain multiple native sites for conjugation and can be
modified for additional reactive sites [20, 21]. Most of the
ADCs are built on IgG1 scaffolds because the antibody-
dependent cell mediated cytotoxicity (ADCC) and com-
plement-dependent cytotoxicity (CDC) are much stronger
in IgG1 and IgG3 than IgG2 and IgG4 [22, 23].

Linker: it is a chemical spacer between the cytotoxic drug
and themonoclonal body. It is usually stable in the circulation,
but most of the linkers are easily displaced inside the cells.
However, if the linker stays stable inside the cell, it requires
degradation to release the drug. 'e linker must allow the
release of the drug in its active form within or close enough to
the target cells, because early release of drugs in the circulation
can result in systemic toxicity and a lower therapeutic index
[24, 25]. 'ere are 2 types of linkers: cleavable and non-
cleavable, both of them are used in the ADCs developed or
currently in clinical trials [26]. Cleavable linkers depend on the
differences between conditions in the bloodstream and the
cytoplasmic conditions within cancer cells (low pH, proteo-
lytic cleavage, and high glutathione concentrations).
Depending on their response to intracellular conditions, there
are three types of cleavable linkers: hydrazone, disulfide, and
peptide linkers [16, 27]. On the other hand, noncleavable
linkers release the drug after internalization in the target cell
[16, 27]; they rely on complete proteolytic degradation of the
antibody to the amino acid level within the lysosome [27], that
means they require appropriate internalization and degra-
dation inside the cell to be active. 'e most common example
of noncleavable linkers is the thioether linker.

Cytotoxic drug: cytotoxic compounds are divided into
two main categories: microtubule inhibitors and DNA-
damaging agents. 'ere are also other small molecules under
investigation [27, 28]. All the cytotoxic compounds used in
the ADC structure must have higher toxic potency compared
with standard chemotherapeutic agents, be able to kill cancer
cells by induction of apoptosis, have a suitable functional
group for linkage to an antibody, and be soluble in aqueous
solutions to enable the reaction with antibodies [24, 29, 30].

4. Development of Antibody-Drug Conjugates

'ere are three generations of ADCs: first, second, and third.
Table 1shows the main differences between them.

5. Mechanism of Action of HER2-Directed
ADCs [34]

5.1. Classical Mode of Action. 'e monoclonal anti-HER2
binds to the HER2 expressed on the cells of the tumor and

gets internalized by endocytosis. 'e proteases in the ly-
sosomes cleavage the linker, releasing the payload and
starting the cytotoxic effects.

5.2. Bystander Killing Effect. 'is effect happens when the
ADC is designed that the antibody releases the payload before
internalization so that the surrounding cells get affected by its
cytotoxic effects even if they do not express the receptor.

6. Antibody-DrugConjugates (ADCs) Targeting
HER2+ Receptors

6.1. A166 [35]

(1) Monoclonal antibody: a human epidermal growth
factor receptor 2 (EGFR2; HER2; ERBB2) targeting
monoclonal antibody.

(2) Payload: an undisclosed cytotoxic agent with po-
tential antineoplastic activity.

(3) Development status: first in human phase I/II.

6.2. ADCT-502 [36]

(1) Monoclonal antibody: an engineered version of the
humanized monoclonal antihuman epidermal
growth factor receptor 2 (HER2) immunoglobulin
G1 (IgG1) trastuzumab.

(2) Linker: cathepsin B-cleavable valine-alanine linker.
(3) Payload: DNA cross-linking pyrrolobenzodiazepine

(PBD) dimer-based drug tesirine.
(4) Development status [37]: phase I.

6.3. ALT-P7 [38]

(1) Monoclonal antibody: trastuzumab biobetter HM2.
(2) Payload: monomethyl auristatin E (MMAE).
(3) Development status [34]: phase I.

6.4. Anti-HER2-vc0101 [39]

(1) Monoclonal antibody: a human epidermal growth
factor receptor 2 (HER2) site-specifically targeting
monoclonal antibody.

(2) Linker: cleavable valine-citrulline- linker.
(3) Payload: an analog of dolastatin 10, auristatin-0101.

6.5. ARX788 [40]

(1) Monoclonal antibody: a human epidermal growth
factor receptor 2 (EGFR2; HER2) site-specifically
targeting monoclonal antibody.

(2) Linker: para-acetyl-phenylalanine (pAcF linked to a
nonnatural amino acid linker.

(3) Payload: auristatin analog and potent microtubule
inhibitor monomethyl auristatin F (MMAF).

(4) Development status [41]: preclinical studies, phase I.
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6.6. BAT8001 [42]

(1) Monoclonal antibody: a human epidermal growth
factor receptor 2 (EGFR2; HER2; ErbB2) targeting
monoclonal antibody.

(2) Payload: undisclosed maytansine derivative.
(3) Development status [43]: BAT8001 is in phase III

clinical evaluation as a treatment of HER2-pos-
itivemetastatic breast cancer that is treated previously
with trastuzumab..

6.7. DHES0815A [44]

(1) Monoclonal antibody: a monoclonal antibody tar-
geting human epidermal growth factor receptor 2
(ERBB2; EGFR2; HER2).

(2) Payload: a DNA minor groove cross-linking agent
pyrrolo[2, 1-c][1, 4]benzodiazepine monoamide
(PBD-MA).

(3) Development status [34]: first-in-human (FIH), phase
I, open-label, multicenter, dose-escalation study.

6.8. Disitamab Vedotin [45]

(1) Monoclonal antibody: a monoclonal antibody tar-
geting human epidermal growth factor receptor 2
(ERBB2; EGFR2; HER2).

(2) Linker: a cleavable maleimidocaproyl-valyl-cit-
rullinyl-p-aminobenzyloxycarbonyl (mc-val-cit-
PABC) type linker.

(3) Payload: monomethyl auristatin E (MMAE).

Monoclonal antibody

Drug

Linker

CleavableNoncleavable

They depend on the 
differences between the 
bloodstream and cancer 

cells 

They rely on complete proteolytic 
degradation of the antibody 

to the amino acid level within 
the lysosome

They have higher toxic potency 
with a suitable functional 

group for linkage to an 
antibody

They bind tumor cells with 
high avidity and have 
little crossreactivity 

with healthy cells

Figure 1: Structure of an antibody-drug conjugate [19].

Table 1: Main characteristics of the ADC generations.

First-generation [29, 31] Second-generation [29, 32] 'ird-generation [33]
(1) Anticancer drugs were coupled
through noncleavable linkers to murine
mAbs.
(2) Evaluations showed that they were
only moderately potent and less active
than the parent drugs.
(3) Examples: KS1/4-methotrexate and
BR96-doxorubicin.

(1) Huge improvements in mAbs technology were
made, increasing selective binding to tumor cells
and reducing crossreactivity with healthy cells.
Payloads with smaller molecules were also
discovered.
(2) Examples: brentuximab vedotin, ado-
trastuzumab emtansine, and inotuzumab
ozogamicin.

(1) Site-specific conjugation was
developed, improving the therapeutic
index, stability, and potency.
(2) Examples: MEDI4276, vadastuximab
talirine, and IMGN779.
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(4) Development status: phase I and phase II .

6.9. LCB14-0110 [46]

(1) Monoclonal antibody: a monoclonal antibody
against human epidermal growth factor receptor 2
(HER2) site-specifically.

(2) Payload: monomethyl auristatin F (MMAF).
(3) Development status: LegoChemistry™ and ADC

platform technology ConjuAll™.

6.10. Hertuzumab Vedotin [47]

(1) Monoclonal antibody: hertuzumab.
(2) Payload: monomethyl auristatin E (MMAE).
(3) Development status: phase I and phase II.

6.11. MEDI4276 [48]

(1) Monoclonal antibody: a bispecific antibody against
the extracellular domain of human epidermal growth
factor receptor 2 (HER2; ERBB2) comprised of the
single-chain variable fragment (scFv) of the anti-
HER2 monoclonal antibody trastuzumab, fused to
the heavy chains of the anti-HER2 monoclonal
antibody 39S.

(2) Payload: tubulysin
(3) Development status [49]: phase I.

6.12. MI130004 [50]

(1) Monoclonal antibody: trastuzumab.
(2) Linker [51]: it has a maleimide group to facilitate

conjugation to Cys residues.
(3) Payload: PM050489.
(4) Development status [51]: preclinical.

6.13. MM-302 [52]

(1) Monoclonal antibody: a monoclonal antibody
against the human epidermal growth factor receptor
2 (HER2).

(2) Payload: the antineoplastic anthracycline antibiotic
doxorubicin encapsulated within liposomes.

(3) Development status [53]: phase II.

6.14. Trastuzumab Deruxtecan [54]

(1) Monoclonal antibody: a monoclonal antibody tar-
geting human epidermal growth factor receptor 2
(ERBB2; EGFR2; HER2).

(2) Linker: a tetrapeptide linker, Gly-Phe-Leu-Gly
(GFLG).

(3) Payload: deruxtecan, a derivative of the campto-
thecin analog exatecan (DXd; DX-8951 derivative); a

DNA topoisomerase 1 (topoisomerase I; Top1) in-
hibitor, with antineoplastic activity.

(4) Development status [55]: FDA approval based on the
results of the registrational phase II trial DESTINY-
Breast01.

6.15. Trastuzumab Duocarmazine [56]

(1) Monoclonal antibody: trastuzumab, a monoclonal
antibody targeting epidermal growth factor receptor
2 (HER2).

(2) Linker [57]: a cleavable linker N-[2-(2mal-
eimidoethoxy)ethoxycarbonyl]-L-valyl-L-cit-
rullinyl-p-aminobenzyloxycarbonyl-N-[2-(2-
hydroxyethoxy)ethyl]-N-[2-(methylamino)ethyl]
carbamoyl.

(3) Payload: the duocarmycin prodrug.
(4) Development status [57]: phase I, phase II, and phase

III.

6.16. Trastuzumab Emtansine [58]

(1) Monoclonal antibody: trastuzumab.
(2) Linker [59]: noncleavable succinimidyl-4-(N-mal-

eimidomethyl) cyclohexane-1-carboxylate (SMCC)
linker

(3) Payload: the microtubule-inhibitory agent DM1.
(4) Development status [59]: approved 2013 and ap-

proved 2019.

6.17. XMT-1522 [60]

(1) Monoclonal antibody: HT-19, a monoclonal anti-
body directed against the human epidermal growth
factor receptor 2 (ERBB2; HER2) that binds to do-
main IV of HER2 to an epitope that is distinct from
the trastuzumab-binding site

(2) Payload: proprietary auristatin-derived payload
molecules.

(3) Development status [61]: in January 2019, phase I
studies for breast cancer (late-stage disease, meta-
static disease), gastric cancer (late-stage disease), and
nonsmall cell lung cancer (late-stage disease) are
discontinued (United States)

7. Antibody-DrugConjugates (ADCs) Targeting
Triple Negative Breast Cancer (TNBC)

7.1. Sacituzumab Govitecan [62]

(1) Monoclonal antibody: sactizumab, an anti-Trop-2
humanized antibody.

(2) Payload: the topoisomerase-I inhibitor SN-38.
(3) Development status [63]: phase I/II.
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7.2. Ladiratuzumab Vedotin [64]

(1) Monoclonal antibody: the zinc transporter LIV-1
targeting humanized antibody.

(2) Payload: monomethyl auristatin E (MMAE).
(3) Development status: phase I.

7.3. AVID100 [65]

(1) Monoclonal antibody: anti-EGFR antibody.
(2) Payload: DM1 (derivative of maytansine).
(3) Development status: phase I.

7.4. U3-1402 [66]

(1) Monoclonal antibody: an anti-HER3 antibody.
(2) Payload: a topoisomerase I inhibitor exatecan de-

rivative (DXd).
(3) Development Status: phase I/II.

7.5. CAB-ROR2-ADC [67]

(1) Monoclonal antibody: receptor tyrosine kinase-like
orphan receptor 2 (ROR2) targeting antibody.

(2) Payload: an undisclosed payload.
(3) Development status: phase I/II.

7.6. Anti-CA6-DM4 Immunoconjugate [68]

(1) Monoclonal antibody: a humanized DS6 antibody
directed against tumor-associated sialoglycotope
CA6.

(2) Payload: the maytansinoid DM4.
(3) Development status: phase I.

8. Conclusion

Breast cancer has become the most common cancer in the
world; a lot of treatment methods and technologies were
used in order to control it, but all of them did not achieve the
required goal, until the invention of the antibody-drug
conjugates. 'e concept of targeted delivery of anticancer
drugs helped the oncologists to improve the tumor selec-
tivity of anticancer drugs and to lower their systemic tox-
icity. Meaning that these drugs could be administered at
higher doses, providing better therapeutic benefit to their
patients. 'e tumor selectivity of antibodies offered a chance
to achieve this goal by using them as guide for the drug
towards the tumor. 'is seemingly simple concept had great
attention from researchers at academic institutions and in
the pharmaceutical industry. 'e current breed of ADCs
uses antibodies that are humanized, not immunogenic, and
linkers that are designed to be stable in circulation, but are
cleaved upon delivery into a cell. 'e recent FDA approvals
of new ADCs have generated tremendous excitement. 'ere
are a lot of ADCs currently in clinical evaluation and almost
every major pharmaceutical company has embraced this

technology.'ere is active research by medicinal chemists to
develop new linkers and discover new potent effector
molecules suitable for use in ADCs, while biologists have
focused on identifying cell-surface targets suitable for an-
tibody development.
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